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ABSTRACT _--

A new method is developed for modeling heli-

copter high-speed impulsive (HSI) noise. The aero-

dynamics and acoustics near the rotor blade tip are

computed by solving the Euler equations on an un-

structured grid. A stationary Kirchhoff surface inte-

gral is then used to propagate these acoustic signals
to the far field. The near-field Euler solver uses a

solution-adaptive grid scheme to improve the resolu-
tion of the acoustic signal. Grid points are locally

added and/or deleted from the mesh at each adap-
tive step. An important part of this procedure is the

choice of an appropriate error indicator. The error

indicator is computed from the flowfield solution and

determines the regions for mesh coarsening and re-

finement. Computed results for HSI noise compare

favorably with experimental data for three different

hovering rotorcases.

INTRODUCTION

The reduction of rotor noise is an important goal

for both civilian and military helicopters. Among the

many contributors to rotor noise, one of the loud-

est and most annoying is called high-speed impulsive

(HSI) noise. Impulsive noise is characterized by a

strong acoustic disturbance that occurs over a very

short period of time.

The production of HSI noise is strongly affected

by a phenomenon known as flowfield delocalization.

*This paper is declared the work of the U.S. Government
and is not subject to copyright protection in the United States.
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Delocalization occurs when the rotor speed increases

to a point where supersonic flow on the rotor surface

connects to the supersonic region beyond the linear

sonic cylinder. The sonic cylinder is defined as the

surface on which the relative speed between the undis-
turbed freestream and an observer on the blade has

a Mach number equal to one. An example of delocal-
ized flow is shown in Fig. 1. In this case, the fiowfield

is not delocalized when the hover tip Mach number,

Mr, is less than 0.9. Delocalization occurs when Mt

is increased beyond 0.9, and the acoustic signal shows

a dramatic increase in strength.

Once the flow on the rotor has delocalized, the

surface shock is free to propagate to the far field with

little dissipation. The resulting impulsive signal is

perceived as a loud periodic "popping" sound. The

delocalization phenomena is highly dependent on non-
linear transonic effects that occur near the blade tip.

For this reason, linear methods [1], that are based

on the Ffowcs Williams and Hawkings equation [2],

cannot accurately model this type of noise.

Numerical solutions of the Full-Potential, Euler,

or Navier-Stokes equations provide better models for
these transonic flow nonlinearities. Their main draw-

back, however, is that it is computationally expensive

to accurately solve the equations over large domains.

An excellent compromise is to model the near-field

transonic flow with a nonlinear Computational Fluid

Dynamics (CFD) method, and to couple this near-

field solution to a Kirchhoff integral formula. The

Kirchhoff formulation [3] integrates a known pressure

field over a prescribed surface, and then propagates
this to the far field. The Kirchhoff formulation is

much more computationally efficient than its CFD

counterpart.
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Figure 1: Schematic of delocalization and helicopter
rotor noise.

earlier make use of structured grids to discretize the

fiowfield. This makes it difficult to cluster grid points

around the HSI noise signals. First, the trajectory

of these signals are generally not known in advance of

the computation. Second, it is very difficult to locally
insert and delete points in a structured mesh.

The alternative approach in this paper is to use

a solution-adaptive unstructured-grid solver to model

the aerodynamic and acoustic fields close to the ro-

tor blade. The major advantage of an unstructured-

grid Euler solver is that it facilitates the efficient in-
sertion and deletion of points in the computational

mesh. Thus, the grid can locally adapt to improve

the resolution of important aerodynamic and acous-
tic flow features. The HSI noise problem is a good

candidate for solution-adaptive schemes because the

acoustic wave is very distinct in both the near and far

fields. This makes it easy to identify the regions of

the grid that need refinement.

This paper demonstrates a new solution-adaptive
CFD scheme for solving the aerodynamic and acoustic

fields around hovering rotor blades. The near field is
modeled with an unstructured-grid Euler solver while

the far-field acoustic propagation is computed from

a newly-developed Kirchhoff integral method. The

combined approach forms a powerful method for de-

termining both near- and far-field HSI noise.

Purcell and his colleagues [4-7] were the first
to use CFD models to study the HSI noise prob-

lem. Their method solved the Full-Potential equa-

tion to model the blade-tip aerodynamics. The near-

field CFD solution was then coupled to a nonlinear

Kirchhoff integral formula to propagate the acoustic
solution to the far field. A similar approach has been

taken in a recent paper by Xue and Lyrintzis [8] using

a rotating Kirchhoff formulation. In both cases, the

::_ results showed reasonably good agreementcomputed

with experimental data for hovering rotors.

In other work, Baeder et al. [9-11], have modeled

the same ttSI noise problems with CFD solutions to
the Euler equations. The use of grid Clustering in

the far field enabled the acoustic signals to be accu-

rately captured out to three rotor radii. This method

has been applied to rotors in both hover and forward

flight. The structured:grid Euler solver has also been

coupled to a Kirchhoff integral formulation that prop-

agates the acoustic signal to the far field [11].

A key feature of HSI noise signals is that they are
confined to a very narrow region as they propagate

away from the rotor blade. An accurate CFD sim-
ulation must concentrate grid points along the path

of this acoustic signal in order to minimize numeri-

cal dissipation. All of the CFD approaches described

EULEH FLOW SOLVER

The near-field aerodynamics and acoustics are
modeled with a modified version of the three-dimen-

sional Euler solver developed by Barth [12]. The

finite-volume upwind scheme solves for solution vari-
ables at the vertices of the mesh and satisfies the inte-

gral conservation laws on non-overlapping polyhedral
control volumes surrounding these vertices. It is a

faithful implementation of Godunov's upwind scheme

on generalized unstructured meshes. Improved solu-

tion accuracy is achieved by using a piecewise linear
reconstruction of the solution in each control volume.

This improved spatial accuracy hinges heavily on the

calculation of the solution gradient in each control

volume given pointwise values of the solution at the
vertices of the mesh. The solution is advanced in time

using conventional explicit procedures.

A rotary-wing version of this code was devel-

oped by Strawn and Barth [13]. The governing Euler

equations have been rewritten in an inertial reference
frame so that the rotor blade and grid system move

through stationary air at the specified rotational and

translational speeds. Fluxes across each computa-
tional control volume were computed using the rel-

ative velocities between the moving grid and the sta-

tionary far field. This formulation is valid for rotors



in hover and forward flight.

An important highlight is that the code uses an

edge-based data structure rather than one based on

elements. Edges of the mesh are defined as the lines
that connect two vertices. Since the number of edges

in a mesh is significantly smaller than the number
of faces, cell-vertex edge schemes are inherently more
efficient than cell-centered element methods [12]. Fur-

thermore, an edge-based data structure does not limit

the user to a particular volume element. Even though
tetrahedral elements are used in this paper, any arbi-

trary combination of polyhedra can be used.

MESH ADAPTION SCHEME

Two types of solution-adaptive grid strategies

have recently been used with unstructured-grid meth-

ods. The first is a grid regeneration scheme where an
initial solution is obtained on a coarse mesh and then

some error indicator is used to designate regions in

the flowfield where additional grid points are required.

The mesh is then regenerated with a higher concen-

trat{on of grid points in these targeted flow regions.

One major disadvantage of this scheme is that it is

computationally intensive. This is a drawback for un-

steady problems where the mesh must be frequently
adapted. However, an advantage of this scheme is

that the resulting grids are usually well-formed with
smooth transitions between regions of coarse and fine

mesh spacing. Also, the mesh refinement can take

place in a nonlinear manner.

A second strategy for producing solution-

adaptive meshes involves local modification of the

existing grid in regions where the solution is either

changing rapidly or remains relatively constant. Grid

points are individually added to the existing mesh

in regions where the error indicator is high, and re-
moved from regions where the error indicator is low.

The advantage of this strategy is that relatively few

mesh points need to be deleted or added at each coars-
ening/refinement step. However, the scheme has the

disadvantage that complicated logic and data struc-
tures are required to keep track of the points that are
added and removed. Because of the importance of

flowfield unsteadiness in r0torcraft problems, we have

chosen the local grid modification scheme as the basis

for our dynamic mesh adaption.

The 3-D mesh adaption scheme is described by

Biswas and Strawn [14]. It requires an initial solu-
tion on a coarse tetrahedral mesh. An error estimate

is then computed for each edge of the mesh that is
used to determine the regions to be adapted. Partic-

ular attention is paid to the computer data structures
so that a tetrahedral mesh can be rapidly recreated

after grid points are removed and/or inserted. The

mesh points can be added or deleted in an anisotropic
manner in order to efficiently resolve directional flow

features. The goal is an optimal distribution of mesh

points for a given error indicator.

ERROR INDICATOR FOR HSI NOISE

Simple error estimates based on gradients of flow-

field quantities have been used by several researchers.

One study, by Kallinderis et al. [15], used differences

in velocity magnitude across each edge to determine
an error indicator for the flowfield. This type of error

indicator is easy to implement and has a simple physi-

cal interpretation. More complicated error indicators

could be used, but they are probably not necessary

for HSI acoustics problems. Generally, almost any
reasonable error indicator can adequately target an

impulsive signal such as an acoustic wave or a shock.

Since we are interested in computing acoustic

pressure signals, we have chosen pressure differences

across edges of the mesh to indicate flowfield regions

that require mesh refinement or coarsening. This er-
ror indicator should work well both on the blade sur-

face and near the blade tip. However, it does not ad-

equately target the far-field acoustic wave for refine-

ment. This is because the strength of an HSI acoustic

signal decreases rapidly as it gets farther away from
the blade tip. In fact, the peak minimum acoustic

pressures have been shown [5] to attenuate as

1

IPmin-- P_] _ _ 2 " (I)
- 1

Here, emin is the minimum local pressure, P_ is the
freestream pressure, r is the radial distance from the

hub, and P_c is the radial location of the linear sonic

cylinder.

This brings up an interesting general problem for

error indicators. If the goal of the error indicator is

simply to minimize the global error in the solution,
then it will probably always target regions on the
blade for refinement. This is because the magnittide

of pressure disturbances on the blade is much larger
than those in the far field. Hence, the error magnitude

will also be higher there. This is true even though the

far-field acoustic pressures may have a very large rel-
ative error. The objective in this paper is to resolve

the acoustic signal in both the near and far fields, not

just to reduce the global error in the solution. Hence,
error estimates for the far-field acoustic signals must

be weighted equally with those on the blade surface.

Eq. (1) can be used to help determine a proper

weighting factor away from the blade tip. If the

general shape of the HSI acoustic wave is assumed
to remain constant, the pressure derivatives for this



waveandtheresultingerrorindicatorshouldscaleby
Eq.(1). However,theproblemwithEq.(1)is that it
isnotdefined for r < R_¢. A better choice is a func-

tion that behaves asymptotically like Eq. (1), but is
well-defined between the blade tip and the linear sonic

cylinder. Such a function is given by

1

]Pmin - Pool = K(_ - 1)" (2)

Here, R is the radial tip location and K is a con-
stant that is determined from the computed solution

on the mesh that is ready to be adapted. Eq. (2)

is an excellent representation of the behavior of the
acoustic wave for HSI noise. An example of this is

shown in Fig. 2. In this figure, computed pressure
data for various meshes is compared with the curve

fits obtained from Eq. (2). For this case, Mt = 0.95
and the acoustic flowfield is delocalized. Each of the

three meshes in the figure has a different resolution

in the region of the acoustic wave. These meshes will
be described in detail later in the paper. It is remark-

able that the curve fits from Eq. (2) represent these

minimum acoustic pressures so well, for both coarse

and fine meshes. Similar good results for the curve

fits were obtained for the Mt = 0.9 test case that also

shows a delocalized acoustic wave.
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Figure 2: Acoustic pressure curve fits for Mt = 0.95.

The final test case has Mt = 0.88 and is not

delocalized. Curve fits for this case are shown for

three different mesh resolutions in Fig. 3. Note that

these curve fits do not match the minimum pressure

data quite as well as for the two higher Mach number
deiocalized cases. The effects of this mismatch will

be discussed in the next section.

Based on the curve fits for HSI noise, we can
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Figure 3: Acoustic pressure curve fits for Mt = 0.88.
/

write the scaled error indicator as

IAPI, if r _<REe= lAP I{I+K(-_-I)}, if r>R, (3)

where lAP[ is the pressure difference across an edge
and is nondimensionalized by freestream density and

speed of sound squared. This error indicator is used
for all the calculations in this paper.

MESH ADAPTION RESULTS

Three test cases have been chosen for this paper.

All are rectangular-blade rotors in hover with NACA
0012 airfoil sections and aspect ratios of 13.71. These
three calculations have Mt = 0.95, 0.90, and 0.88,

respectively. The first two cases show significant de-

/

Figure 4: Boundaries of the initial mesh for Mt =
0.90.
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Figure 5: Computed error values for Mt = 0.95, contour interval is 0.063, 20 total contours.

localization at the tip, while the third case is not delo-
calized. These conditions correspond to experimental

cases tested by Purcell [6,7]. They have already been

successfully simulated by a number of researchers [4-

11], however, direct comparisons to these other sim-
ulations will be limited. The primary purpose of the

calculations in this paper is to demonstrate the capa-

bilities of the new computational methods.

The first task in the mesh adaption strategy is

to choose an initial mesh. There are conflicting re-

quirements for this mesh, First, it is desirable to sim-

plify the mesh generation process as much as possible.
A robust and generalized solution procedure should

begin with an arbitrary initial mesh and eventually
reach an adapted mesh with sufficient resolution to

capture important flowfield features.

However, a totally general mesh could result in

an extremely coarse grid in the far field. The error

indicators from the resulting solution may be so inac-

curate that the presence of the propagating acoustic

wave is completely missed. Clearly, an initial mesh

requires some minimum far-field resolution in order
to identify the presence of an acoustic signal.

The initial meshes chosen for these simula-

tions are modified versions of the meshes used by

Baeder [10]. These meshes have been chosen largely
for convenience. Because the rotors are nonlifting, the

mesh only needs to cover the upper half plane due to

symmetry. The original structured grids had dimen-

sions of 49 x 37 x 31 and extended out to three rotor

radii in the spanwise direction. In order to obtain a

coarser initial grid for the current calculations, every

other point was used in both the chordwise and nor-
mal directions to the rotor surface. This reduced the

grid size by a factor of four. Also, the outer spanwise

boundary for the calculation was reduced to two rotor
radii.

Unstructured tetrahedral grids were created from
these meshes by dividing each hexahedral element

into five tetrahedra. The resulting unstructured grids

contain 13,967 nodes, 60,986 tetrahedra, and 6,818

triangular boundary faces. The outer boundaries of
the mesh for the Mt = 0.90 case are shown in Fig. 4.

Note that there is already some clustering along the

expected path for the acoustic wave. The mesh adap-

tion scheme will increase the resolution in this region.

Initial solutions are computed on these coarse

meshes by running the explicit flow solver for about
1,000 iterations requiring approximately 20 CPU

minutes on a Cray C-90 computer. The resulting so-

lution is then used to compute error indicators for the

refinement and coarsening steps to follow. Computed
error indicators for the Mt = 0.95 case are shown

on the symmetry plane in the left portion of Fig. 5.
These error values are computed from Eq. (3) with

K = 21. This value of K was determined from Fig. 2.

Note that the scaled error indicator equally weights

the surface shock on the blade with the propagating

acoustic signal. These contour plots are produced by



Figure 6: Final mesh and computed pressure contours for Mt = 0.90, contour interval is 0.021, pressure is normalized

by freestream density and speed of sound squared.

distributing the edgewise errors to the nodes in an
approximate way. This procedure is only used to vi-
sualize the estimated error. The lack of smoothness

in the contours does not necessarily reflect what was

actually used for the mesh adaption.

Approximately 10,000 edges are targeted for sub-
division and a new mesh is formed that contains

35,219 nodes. The mesh refinement step requires only
a few CPU seconds on the C-90. The old solution is

linearly interpolated onto the new mesh points and
the flow solver is run for another 1,000 iterations with

this as a starting solution. It is probably not neces-

sary to run the flow solver for this many iterations

since the interpolated starting solution is a very good

guess at the converged result.

The error indicator in Eq. (3) is then used to

both coarsen and refine the mesh. The curve-fit con-

stant, K, is now set to 17, and the resulting error con-

tours are shown in the right portion of Fig. 5. Once

again, the surface shock and acoustic wave receive the

highest error values. Approximately 9,000 nodes are
removed from the mesh, and then 45,000 new nodes

are added. Thus, the nodes are redistributed in a

way that better captures the HSI noise signal. The
final mesh has 72,123 nodes, 389,949 tetrahedra, and

15,076 boundary faces. The flow solver is run for an-

other 1,000 iterations on this mesh, requiring about

85 CPU minutes on a C-90.

Calculations for the Mt -- 0.90 case proceeded

in a similar manner. Comparable numbers of mesh

points were targeted for coarsening and refinement

at each adaption step. The final mesh contains

77,467 nodes, 421,030 tetrahedra, and 15,854 bound-

ary faces. Fig. 6 shows the resulting mesh in the sym-

metry plane, along with computed pressure contours.
Note that there are two levels of refinement at the

shock, near the blade tip, and along the acoustic wave

that propagates to the far field. The corresponding
nondimensional pressure contours show large gradi-

ents in these regions.

Mesh adaption for the Mt = 0.88 case proved to
be more difficult than for the two higher-speed cases.

Fig. 7 shows the_e_rr_gr !ndicator values for the first
and second meshes. The first mesh shows scaled error

values that are qualitatively similar to those from the

other two cases. The leading and trailing edge regions
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Figure 7: Computed error values for Mt = 0.88, contour interval is 0.062, 20 total contours.

on the blade are targeted, as is the acoustic wave that

propagates away from the blade tip. The error scaling

constant, K was set to 92, and was obtained from

Fig. 3.

Fig. 3 also shows that the peak negative pres-
sure values for the next two mesh refinements are not

as linear as those for their higher-speed counterparts.

This may be due to the fact that the acoustic wave for
the Mt = 0.88 case is not delocalized. The straight-
line curve fits for the second and third meshes do not

agree well with the data for 1.2 < r/R < 1.6 and it
is expected that the error estimates will be underpre-

dicted in this region. This is confirmed by the error
contours for the second mesh in Fig. 7. The region

from 1.2 < r/R < 1.6 is not targeted for further re-
finement. However, both the blade surface and the

far-field acoustic wave have large error values.

The first mesh refinement for Mt = 0.88 case

resulted in a grid that was similar in size to the

Mt = 0.95 case. After viewing the resulting error
contours for the second mesh in Fig. 7, a large num-

ber of new grid points were added at the next coars-

ening/refinement step. This was done to see if the
acoustic wave could be continuously targeted for a

second level of grid refinement. This was not success-

ful, and most of the added points were placed near the
far-field boundary of the grid. The final grid size for

this computation was 121,383 nodes, 674,584 tetra-

hedra, and 20,510 boundary faces. Even with this

large number of grid points, there is only has one
level of mesh refinement for the acoustic wave between

1.2 < r/R < 1.6.

In retrospect, the same computed accuracy could

have probably been obtained with far fewer grid

points. This example demonstrates the importance of

proper error scaling for the acoustic wave away from

the blade tip. A more effective adaptive strategy for
this case would have been to modify the error scaling

function in Eq. (3) so that it better fit the computed

pressure fields in Fig. 3.

KIRCHHOFF FORMULATION

Even though HSI rotor noise can be accurately

computed with a CFD method, it is not practical
to extend the computational domain beyond two or

three rotor radii. The resulting large numbers of mesh

points make this calculation prohibitive. An excellent

solution to this problem, however, is to use a clas-

sical Kirchhoff integral formulation to compute the

acoustic signals at arbitrary locations in the far field.
As mentioned earlier, this type of approach has been

used by a number of other researchers. The method

presented here is similar to that used by Baeder et

al: [11]. However, significant differences exist in the
methods used to obtain derivative quantities on the

Kirchhoff surface.

A classical Kirchhoff integral for a stationary sur-



facecanbe written as

1 [ [ cos 0 p 1 p,, cos 0 ]
P( ,O = ., 1o - + P'/ as.

(4)
The relevant terms in this equation can be described

with reference to Fig. 8. Here, the observer is located
at _ with time t. The distance between the observer

and a point on the Kirchhoff surface is given by 14,

and 0 is the angle between _"and the normal _ to the

surface. P, P,, and PT are the acoustic pressure, and
its normal and temporal derivatives, respectively, on

the Kirchhoff surface. All pressure values and deriva-
tives are evaluated at the time of emission, also re-

ferred to as the retarded time.

Kirchhoff. //
x surf.co\ /

X

_ s J

V
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_J

Observer • O_t)

terpolated onto the Kirchhoff surface. The Kirchhoff
surface is discretized as a two-dimensional Cartesian

mesh with uniform spacing in the azimuthal direction

and nonuniform spacing in the vertical direction, z.

Contributions to the integral from the top and bot-

tom surfaces are neglected since they are small. The
uniform azimuthal spacing is required to facilitate the

evaluation of the pressure field at the retarded time.

It is important that this uniform mesh spacing be
commensurate with the finest mesh spacing for the

CFD grid. For the three cases in this paper, 7,000

azimuthal mesh points were used, which more than
exceeds this requirement. The Kirchhoff surface dis-
cretization can be nonuniform in the z direction. 119

points were used here, with spacings that are similar

to those in the Euler CFD grid.

Pressure values for the Kirchhoff surface are lin-

early interpolated from the unstructured tetrahedral

mesh. The two pressure derivatives are directly com-

puted at the nodes by the flow solver and these are

also interpolated onto the Kirchhoff mesh. It is im-

portant that the pressure derivatives be accurately
evaluated in a manner that is consistent with the CFD

solution algorithm. This means that these derivatives
must be properly upwinded near impulsive flow fea-
tures such as shocks.

The second step in solving the Kirchhoff equation

is to integrate Eq. (4) numerically. The only trick here

is that the pressure evaluations must be performed at
the retarded time. This is simplified by the fact that
the rotor is in hover. As a result, there is a one-to-

one correspondence between time and the azimuthal

angle. Pressure values at any retarded time can be

found by tracing back in the azimuthal direction for
a constant z.

Figure 8: Schematic for the Kirchhoff surface integra-
tion.

The speed of sound in Eq. (4) is given by aoo,
which is assumed to be constant. This means that

the cylindrical Kirchhoff surface must be placed at a

radial distance that is sufficiently large so that flow-
field nonlinearities are small. On the other hand,

the CFD solution is less accurate as it gets farther

away from the blade tip. This decrease in accuracy is

caused by numerical dissipation. A good compromise
location for the Kirchhoff surface was found to be at

r/R = 1.4. The nonlinearities are small here, and the
CFD solution is still highly accurate. This statement

is backed up by computed results presented later in

the paper.

Two steps are required to evaluate the integral

in Eq. (4). First, the Euler CFD solution must be in-

COMPARISONS WITH EXPERIMENT

Computed acoustic pressures from the three test

cases can be compared to experimental results from

Purcell [6,7]. He measured acoustic pressures from a
1/7th scale model of a UIIt-III rotor blade with two

untwisted rectangular blades and NACA 0012 cross

sections. These blades had a three-inch chord length

and an aspect ratio of 13.71. A range of hover tip
Mach numbers were tested from 0.85 to 0.95. De-

localization was found to occur between Mt = 0.88

and 0.90. For each Mach number, acoustic pres-
sures were measured at four radial locations. The

first location corresponds to the linear sonic cylinder

(r/R = 1/Mr). The other three microphones were

located at fir = 1.78, 2.18, and 3.09 .........

Fig. 9 compares the computer predictions to the

experimental data for Mt = 0.95. The sonic cylin-

der result at r]R = 1.053 shows good agreement be-
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Figure 9: Computed and experimental acoustic pressures for Mt = 0.95.

tween computation and experiment for the general

wave shape. The peak negative pressure is somewhat

overpredicted here, but the impulsive shock is well

captured by the computation. The acoustic wave is

clearly delocalized, as evidenced by the asymmetry of

the signal.

The r/R = 1.78 radial location shows computed

results that have been obtained by two methods. One

result comes directly from the CFD Euler solution.
The other comes from the Kirchhoff integration on a

surface that is located at s/R = 1.4, where s is the
radial location of the Kirchhoff surface. The excellent

agreement between the two computed results serves
as a validation of the Kirchhoff approach as well as

showing the grid independence of the CFD solution

near the outer boundary. Both solutions also show ex-

cellent agreement with the experimental data except

for a smallregi0n near the beginning of the acoustic
signal. This discrepancy may be due to a lack of grid

resolution for the Euler solution in this region. The

error indicator in Eq. (3) targets edges for refinement

that have large first derivatives. This strategy refines

the mesh in the middle of the acoustic wave, but not

so much at the beginning or the end. An error indica-

tor that targets second derivatives of pressure might

do a better job in these areas.

The acoustic pressure plots for r/R = 2.18 and

r/R = 3.09 show similar good agreement with the
data as was seen for the other two radial cases. The

computed results are obtained from the Kirchhoff in-

tegration. In general, the shape and duration of the

acoustic signals are well captured, while the magni-

tude of the peak negative pressure is slightly over-

predicted. The r/R = 3.09 radial location shows
computed pr_ures obtained from Kirchhoff surfaces
at two different radial locations. Results from these

Kirchhoff integrations show excellent agreement with

each other, with small discrepancies at the end of the
acoustic wave. The fact that the Kirchhoff results are

insensitive to the surface location indicates that the

effects of any nonlinearities beyond these Kirchhoff
surfaces are small.
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Figure 10: Computed and experimental acoustic pressures for Mt = 0.90.

Computed and experimental acoustic pressures

for the Mt = 0.90 case are shown in Fig. 10. The

sonic cylinder guler calculation at r/R = 1.111 shows

excellent agreement with the data, both in the wave

shape and pressure magnitudes. However, the com-

puted solutions at the other three radial locations all
show that the peak negative pressure is slightly un-

derpredicted. The general wave shapes are well pre-

dicted though, including the impulsive noise and pres-

sure asymmetry. The excellent agreement between
the Kirchhoff and Euler results at r/R = 1.78 is evi-

dence that both results are grid independent.

Finally, Fig. 11 shows computed and experimen-

tal acoustic pressures for M, = 0.88. This case is

not delocalized, and the resulting experimental and

computational results show a more symmetrical wave

shape than in the higher-speed cases. The compar-
ison between experiment and computational results

is similar for all four radial locations. The general

wave shape is well predicted, but the magnitude of

the predicted peak negative pressure is approximately

ten percent too low at all radial locations. The ex-

cellent agreement between the Kirchhoff and Euler

solutions at r/R = 1.78, shows that lack of grid res-

olution for either method is probably not the cause

for this underprediction. Also, Baeder et al. [11]

show very similar computed results for this case using

their structured-grid Euler solver. Perhaps the invis-

cid approximation in the Euler solver has an effect

on the computed results. The true flowfield around
the blade tip involves localized flow separation and

shock/boundary-layer interactions. The Euler solver
does not model these, and their effect on the acoustic

signals is not known.

SUMMARY AND CONCLUSIONS

In general, the computed results from all three cases

show good agreement with Purcell's experimental

data [6,7]. They also show excellent agreement with

the structured-grid Euler calculations of Baeder et

al. [11]. The three cases span ttSI noise conditions

10
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Figure 11: Computed and experimental acoustic pressures for Mt = 0.88.

ranging from nondelocalized, to slightly delocalized,
to fully delocalized. The overall adaptive-grid scheme
works best for the two delocalized cases, which is not

surprising, since these have the most clearly-defined

acoustic signals.

The results in this paper represent the first

time that solution-adaptive CFD methods have been

used to model problems in helicopter acoustics. The

unstructured-grid approach provides a great deal of

flexibility for grid generation and mesh adaption

around complicated rotor planforms. Although these

capabilities were not specifically addressed in this

paper, the generality of the unstructured-grid ap-

proach offers several advantages over conventional

structured-grid schemes.

This paper has shown that the choice and scaling
of an error indicator is crucial to the success of an

adaptive-grid computation of HSI noise. The ability

to locally refine the grid is only useful if the resulting

mesh points are placed where they will improve the
solution. In three dimensions, it is easy to waste a

large number of grid points through the poor choice
of an error indicator. This paper has developed a

simple error indicator and a scaling factor that are

appropriate for ttSI noise. The adaptive strategies
that are used with this error indicator yield excellent

results for ttSI noise, particularly when the acoustic

signals are strongly delocalized.

The combination of an Euler CFD method and

a Kirchhoff formula is a powerful tool for the pre-

diction of helicopter acoustics. The nonlinear three-
dimensional and transonic effects near the blade tip

are accurately modeled by the CFD solver and the

Kirchhoff integral formula presents an efficient way

to propagate these signals to the far field. Clearly,
the next step is to implement these methods in for-

ward flight.
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